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Introduction to Hidden Markov Models 
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Stochastic processes are commonly used to estimate and track activity based on limited 
or noisy information. A number of interesting types of activity can be modeled using 
stochastic processes, including movement through physical space, the production of 
gestures or spoken language, and even participation in social interaction.  
 
This article introduces hidden Markov models, an inexpensive and intuitive method for 
modeling stochastic processes. The following sections present motivation behind the 
technique, examples of how it can be used to track a player’s movement and behavior 
based on scattered and uncertain observations, as well as details of a computationally 
efficient implementation. 
 
Motivation 
 
My dog is a transparent beast—I don’t even need to be paying attention to know what 
he’s up to. As I sit in front of the TV, I only need to hear his claws tapping on the 
hardwood floor, a quiet cling of metal, the sound of a plastic bag rustling, and I know 
immediately what he’s been doing. He walked through the dining room to the kitchen, 
drank some water, noticed the cabinet door was ajar, and went over to sniff around the 
bag of dog food. And I know immediately that he’s going to come back in a moment, sit 
down right before me, and start begging for a treat, because that’s what he does after he 
notices that there’s food around.   
 
How I arrived at these conclusions is neither unusual nor noteworthy—we do this kind of 
reasoning all the time, without even noticing it. I recognized my dog’s movement through 
the apartment because I know its layout, and I could match what I heard against what I 
know; first, the hardwood floor sound located him in the dining room, then the metal 
water bowl located him in the kitchen, making it easy to figure out his general path. 
Similarly, the snack-begging behavior is typical, and goes through fixed steps; his 
standard progression from noticing food to coming over and begging is so predictable 
that I only needed to recognize the first step of the protocol to know what happens next. 
 
We can mimic some aspects of this kind of reasoning in an artificial agent. In particular, 
if the activity exhibits strong underlying structure, we can use this structure to recognize 
where we are in the activity, how it progressed, and how it might proceed. 
 
Processes with a strong underlying structure invite easy simplification into finite state 
spaces. But for many natural processes, standard deterministic finite-state machines are 
not enough. Even if we know the state space, the current state of the process can rarely be 
known for certain, and will have to be estimated from whatever evidence is available. 
Moreover, we need to deal with the possibility that the evidence for this estimation will 
usually be noisy, incomplete, or incorrect.  
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Noisy processes can be successfully estimated using stochastic techniques. Hidden 
Markov models (HMMs), in particular, have been successfully used to track finite-state 
processes based on noisy evidence. For example, in speech recognition HMMs track the 
production of words as movement through a space of phonemes and sounds, based on 
very noisy evidence but very concrete transition rules; in robot navigation HMMs model 
the movement of a robot through physical space based on occasional and potentially 
erroneous sensor readings, and so on. The same approach can also be used to track 
processes in games, such as the movement of the player through physical or abstract state 
spaces.   
 
Generally speaking, a Markov model can be visualized as a finite state machine with 
probabilistic edges. In a hidden Markov model, the state of the process is not directly 
observable, so we can never be sure of the current state of the process. Instead, the HMM 
includes a probability function that matches states with some kind of observable 
evidence—this allows us to estimate the current state based on a history of evidence 
observations. 
 
The following sections explain the details of this approach. First, Markov models and 
hidden Markov models will be presented as theoretical entities, and it will be shown how 
the state of a model can be estimated from the model definition and a history of 
observations. Second, the implementation of an HMM will be described, including an 
optimization into a sequence of simple matrix operations. Finally, its behavior will be 
demonstrated, using the example of estimating a player’s movement through physical 
space, followed by a description of how HMMs can be used to track movement in 
conversational space.  
 
Hidden Markov Models 
 
Before discussing hidden models, let’s recall the definition of fully-observable n-gram 
Markov models. The following will only be a quick refresher, since n-grams have already 
been discussed in previous AI Game Programming Wisdom articles [Laramée02, 
Hutchens02].  
 
N-gram Markov Models 
 
A Markov model consists of a set of states and a transition function; some authors also 
include an initial probability distribution. The transition function represents the 
probability of the process being in some new state given a history of previous states. The 
size of the history window determines the model’s order: in a first-order model (or 
bigram), the current state only depends on the immediately previous state, in a second-
order model (or trigram), it depends on the last two states, and so on. 
 
First-order models can be conveniently described as probabilistic finite state automata, 

〉〈= pSM ,  such that: 
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• S is the set of states in the process, and 
• p is the transition probability function, where )|( 1−tt ssp signifies the probability 

of transition from state 1−ts  to state ts .  
 
The probabilities associated with all out-edges add up to one, or ∑

∈
−− =∀

Ss
ttt

t

ssps 1)|( 11 . 

Figure 1a illustrates a first-order Markov model of a simple agent’s internal state.  
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Figure 1. Representations of a Markov model for a simple agent behavior: a) bigram 
model on the left; b) model with action production probabilities for each state on the 
right. 
 
Hidden Markov Models 
 
When the state of a process cannot be inspected directly, it must be estimated from some 
sequence of observations. For example, the emotional state of another agent cannot be 
inspected without peeking into its head, but the emotional state is responsible for the 
agent’s actions—so we should be able to estimate the agent’s inner state by observing 
what it is doing.  
 
Hidden Markov models are used to represent processes that are not fully observable. 
They augment the n-gram model with a set of actions that can be observed, and a 
probabilistic mapping between actions and states. 
 
A first-order HMM is a tuple 〉〈= qpASM ,,, where: 

• S is the set of states in the process,  
• A is the set of actions that can be observed, 
• p is the transition probability function, where )|( 1−tt ssp signifies the probability 

of transition from state 1−ts  to state ts , and 
• q is the action observation probability function, where )|( tt saq denotes the 

probability of observing action ta  at time t given state ts . 
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Figure 1b shows an HMM for a simple agent. Dashed boxes and arrows represent actions 
and action observation probabilities, respectively. 
 
HMM Belief Estimation 
 
To estimate the current state of a process, we calculate the probability of being at some 
state ts  after observing a sequence of actions taa ,...,1 , which we can write as 

),...,|()( 1 ttt aaspsb = . Doing this for every possible state ts  gives us a probability 
distribution over the entire state space.  
 
This estimation is performed iteratively, using the well-known forward algorithm 
[Jelinek97]. Let’s assume that we know where the process starts out, that is, we know the 
value of the initial belief distribution )( 0sb . Given some action observation ta , and the 
belief distribution from the previous iteration, we compute the new belief distribution 
over all states Sst ∈  as follows: 

∑
∈

−−
−

=
Ss

tttttt
t

sbsspsaqsb
1

)()|()|()( 11 η  

In other words, the probability of being in some state ts  is a product of: 
1. the probability q of observing action ta  in the state ts , 
2. the probabilities of having been at other states in the last iteration, times the 

probability of having transitioned over to ts , all added up, and  
3. the normalization constant η , which ensures that 1)( =∑

∈
t

Ss

sb
t

. 

For example, Figure 2 shows the belief computation for the sad state, after the frowns 
action was observed. Given that the previous belief values are as shown, the new belief 
probability for the sad state is: 

)(sadb [ ]η)()|()()|()|( angrybangrysadphappybhappysadpsadfrownsq +=  
 [ ]η7.0*7.01.0*3.0*3.0 +=  
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Figure 2. The computation of the probability of the state sad from Figure 1b, given some 
previous belief values, and the observation of the frowns action. Elements not used in the 
computation are grayed out. 
 
Repeating this calculation for every state in the state space results in a belief distribution 
over the space, showing how likely the process is to be in each state.  
 
Implementation 
 
HMM estimation lends itself to very efficient implementation as a series of matrix 
operations. The representation of model parameters as matrices is illustrated in Figure 3. 
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Figure 3. HMM parameters from Figure 1b, stored as vectors and matrices. 
  
In particular, suppose we have an HMM with n states and m actions. The last known 
belief distribution 1−tb  is defined over the n states, so we can store it in an n-element 
vector Bt-1; similarly with tb , the new distribution we are trying to estimate, which will 
be stored as the vector Bt. The transition probability from a source state to a destination 
state can also be represented straightforwardly as a matrix P of size nn× . For the model 
in Figure 3, these would be as follows: 
















=−
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














=

010
7.003.0
3.007.0

P      (state transition probabilities) 

The action observation function q produces a probability of observing a particular action 
given some particular state. We will store it in an n-element vector Q, though it’s also 
convenient to think of it as a composite: Q = Qall Qt, where Qall is a matrix of size mn× , 
containing all the possible state and action probabilities, and Qt is an m-element 
observation vector that “selects” data from the matrix based on which action was 
observed. Using Figure 3 as our example, these become: 
















=

8.002.0
3.07.00

01.09.0

allQ      (all action observation probabilities) 


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












=

1
0
0

tQ      (the action selector, signifying the frowns action was observed) 

Belief distribution computation can now be performed as a series of matrix operations. 
Using * to denote component-wise vector multiplication, the un-normalized belief 
distribution computation can be compacted into the following expression: 

( ) ( )tall1tt QQBPB' *−=  

We normalize this distribution by dividing every belief value by the sum of all belief 
values, thus ensuring that the components of the B vector add up to one. 

tt B'B η

η

=

=
∑
∈Ss

sB
1

 

Using matrix notation, the belief computation in the above example becomes: 

tB'  ( ) ( )tall1t QQBP *−=  





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
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








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

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


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0
*

2.0
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














=

16.0
156.0
0

 

η  165.3
16.0156.0

1
=

+
=  
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tB  tB'η=  















=

506.0
494.0
0

 

The new distribution Bt is the latest estimation of the state of the process. In the next 
iteration, Bt will be copied into Bt-1, and the belief distribution computation will begin 
anew. 
 
Performance Considerations 
 
The observant reader will notice that the state estimation cost is )( 2SO . This becomes 
prohibitive for very large state spaces, and requires additional optimizations. If an 
approximate solution is acceptable, one can estimate large models very efficiently using 
particle filters [Bererton04]. These work by sampling only a part of the state space, based 
on the distribution of the belief probability. 
 
Alternatively, we can optimize the forward algorithm computation. In many practical 
cases the transition matrix will be rather sparse, so standard optimizations of sparse 
matrix multiplication [Press92] can be applied. In addition, if action observation is 
always Boolean, the computation of Q can be reduced to a simple column extraction 
from the Qall matrix. 
 
Examples 
 
Hidden Markov models provide an elegant representation for the particular class of 
processes that exhibit finite state structure, whose state cannot be observed directly, but 
which produce some possibly noisy evidence that can be used to estimate the state. The 
following examples illustrate the use of HMMs in two particular scenarios: estimating a 
player’s movement through physical space based on limited sensory evidence, and 
estimating a player’s movement through a dialog based on what they say. 
 
Tracking Movement in Physical Space 
 
HMMs can be used to mimic human tracking of movement through physical space, based 
on only a modicum of evidence. In the example given in the introduction, I didn’t need to 
look around to know when my dog was going to his water bowl in the kitchen. I only 
needed to hear a few familiar noises, and I could tell exactly where he was, and which 
path he took to get there. To mimic this process with a computer, we can represent 
movement as a stochastic process: model the layout of the physical space as a set of 
states and explicating a set of actions that will serve as evidence for the states.  
 
For example, suppose we have a first-person shooter game with an agent hiding inside a 
level and waiting to jump out at the player. The agent cannot see the player, but it can 
roughly hear what they’re doing. Given some knowledge of the layout of the level, and 
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how the action evidence matches up against it, the agent can efficiently estimate the 
player’s position.  
 
Let’s assume the level has the physical layout shown in Figure 4. It’s a simple area made 
up of 27 regions of four types: grass, metal grates, water, and door portals.  

 
Figure 4. Sample physical space. Includes 27 regions of four different types: grass, water, 
metal, and door.  
 
Walking on the different terrain types produces different kinds of noises—for example, 
walking through water tends to produce splashing sounds, while walking on grass usually 
produces no sound at all. We can allow for considerable ambiguity in the mapping 
between terrain types and sounds—the corresponding observation probabilities are 
shown in Table 1.  
 
Table 1. Action observation probabilities for the terrain types.  
 

Action Grass Metal Water Door 
Nothing was heard 0.9 0.1 0 0 
Footsteps on metal 0 0.9 0 0 
Water splashing 0 0 0.9 0 
Door opening 0 0 0 0.9 
Unclear noise 0.1 0 0.1 0.1 

 
Please notice that the action observation probabilities are not unique to particular types of 
terrain—the unclear sounds can serve as evidence for a number of terrain types, as can 
silence. Similarly, there are numerous regions of each type in the level (e.g., six different 
metal grate areas), so some actions serve as evidence for all of them at the same time.  
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Transition probabilities have been defined so that, for a state with n neighbors, the 
probability of a transition to each neighbor is 0.9/n, and the probability of the state 
remaining unchanged (that is, of the player not moving at all) is 0.1. 
 
A sample localization task is presented in Figure 5. In this example, the system was 
presented with a sequence of only three action observations: 
 

1. Some unclear noise 
2. Sound of footsteps on metal 
3. Sound of water splashing 

 
These few observations are enough for the system to figure out the player’s probable 
location. The initial probability distribution is completely uniform—there is no bias 
towards any particular starting point. The first observation of some unclear noise 
constrains the player’s possible location to a number of regions, such as those containing 
grass, water, or a door. The second observation suggests that the player moved onto a 
metal grate, so the metal regions next to the previous best guesses become the most 
probable.  
 
Finally, the third observation suggested movement into a water-filled region, and the one 
water-filled region that lies next to the two locations that were previously most probable 
becomes the new best candidate. In fact, after the third observation, region number 7 has 
by far the highest probability associated with it, and is therefore confidently identified as 
the player’s most likely final location.  
 
Another example of localization, using the same model, is presented in Figure 6. Here, 
the series of observations is longer, and we can see the belief distribution lose and gain 
precision. It is interesting to notice that, even if the distribution is fairly broad, sometimes 
all it takes is one good observation to narrow it down to just one or two states. 
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Figure 5. Sample localization progression given a sequence of observations. The darkest 
regions have the highest belief probabilities. 
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Figure 6. Example of localization based on a series of nine actions. 
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Non-uniform Probability Functions 
 
The model used in the previous example was based on uniform transition probabilities—
each state had the same probability of transitioning to its neighbors, as well as a 
probability of 0.1 of transitioning back to itself. In practice, however, players tend to 
have non-uniform preferences for where to move—in first-person shooters, for example, 
they tend to move away from exposed or transitory areas such as hallways, and stay 
longer near cover and camping spots. These behaviors can be reflected in appropriate 
modifications to the transition probabilities.  
 
The example in Figure 7 has been modified to include a camping spot in region number 
16. The player is assumed to be unlikely to leave that region, and the transition 
distribution has been modified to reflect this, by 
defining 9.0)|( 1616 =ssp and 1.0)|( 1615 =ssp . Consequently, over time region number 
16 “sucks up” the probability distribution. 

 
 
Figure 7. Estimation for a model with non-uniform transition probabilities, and a series of 
“nothing heard” observations. Belief converges on the region with the high self-transition 
probability. 
 
Ultimately, the transition probabilities would be best acquired automatically by observing 
player behavior. The complex topic of how to automatically acquire transition 
probabilities and other model parameters will not be addressed here; the relevant details 
can be found in the standard literature on Markov models [Charniak93]. Fortunately, for 
simple models such as those described here, manual estimation of probabilities is often 
adequate.  
 
Estimation of Movement through a Social Interaction 
 
Perhaps surprisingly, even something as poorly-defined as social interaction can be 
modeled using stochastic processes. In this example, we consider the interaction between 
a player and a computer taking place over natural language utterances. 
 
In many cases of highly structured or familiar interactions, we can impose a specific 
ordering on how the interactions are supposed to proceed. Familiar situations—buying 
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things, asking clerks for information, asking for directions, and so on—do not require 
novel strategies from the participants, and people routinely fall into predictable patterns 
of behavior when engaging in them. This enables us to develop a finite-state 
representation of how the interaction is supposed to evolve over time. 
 
Unfortunately, the ‘current state’ of an interaction cannot be observed directly. However, 
if the interaction exhibits a stable structure, we can represent it with a finite-state model. 
This model’s state can then be estimated by observing what participants say, and using it 
as evidence for where they must be in the dialog. 
 
Social interaction, just like many other complex phenomena, can be simplified via 
hierarchical decomposition. We can decompose the overall interaction into smaller sub-
interactions that are responsible for particular small-scale elements—greeting, selling 
items, answering questions, fulfilling requests, etc. Each of these can be conveniently 
tracked with a separate HMM. Figure 8 presents an example of a simple HMM 
responsible for answering requests for assistance.  
 
 

player-asked-
for-help

considered

asked-for-details declined

wait-for-handler done

player-complained

responded-to-
complaint

 
 
Figure 8. Sample model for handling players’ requests for assistance. 
 
The evidence for these HMMs comes from observations of what participants say. 
However, it would be unfeasible to look for particular sentence forms as evidence—after 
all, there are many ways of saying the same thing. Instead, it’s beneficial to use a layer of 
linguistic abstraction, such as speech acts, to first translate particular sentences into more 
general units, and then use those as evidence of position in the dialog. 
 
Additionally, we can increase the robustness of the system by using several different 
HMMs to track the same interaction element on different levels of generality. For 
example, a request for assistance can be tracked by three different models at the same 
time: a very specific request-for-help handler, a more general generic-request handler, 
and the broadest generic-turn-taking handler—as long as the player follows the expected 
help request protocol, the most specific handler will track it successfully, but the less 
specific ones will also track it redundantly, and take over if the most specific one fails. 
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Running a number of separate redundant models in parallel, but arranged in a control 
hierarchy, greatly increases the system’s robustness.  
 
Tracking stereotyped interactions based on noisy and ambiguous evidence is a matter of 
estimating state in an interaction state space, and proceeds as in the previous example. 
Further details on how to track stereotyped interactions using hierarchical parallel models 
can be found in recent publications [Zubek05a, Zubek05b]. 
 
In Closing 
 
Probabilistic methods such as Bayesian networks have proven to be useful in reasoning 
under uncertainty [Tozour02], and HMMs in particular have been popularly used in a 
number of recognition and estimation tasks. HMMs are particularly successful at tracking 
finite-state processes that have well-known structure, whose state is not directly 
observable, but which produce evidence that can be used to estimate their state. They are 
also computationally inexpensive, and cope well with noisy and ambiguous evidence.  
 
This article introduced hidden Markov models, and the problem of calculating belief 
probability distributions using the forward algorithm. It showed how the relevant 
calculations can be represented as a series of simple matrix operations, and implemented 
inexpensively in software.  
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