
being-in-the-world

Mark A. DePristo

Hughes Hall
Cambridge University
Cambridge, England

mdepristo@cam.ac.uk

Robert Zubek

Computer Science Department
Northwestern University

1890 Maple Ave., Suite 300
Evanston, IL 60201, USA
rob@cs.northwestern.edu

Abstract
being-in-the-world is an intelligent agent capable of living
autonomously in a Multi-User Dungeon world. In this
paper we present a hybrid-architecture approach to
building such an agent, discuss the successes and pitfalls of
this technique, and potential improvements.

Introduction

The domain of Multi-User Dungeons (MUDs) presents an
aspiring AI designer with an interesting set of constraints.
The game environments are relatively simple, but also
highly dynamic and fast paced, with many independent
characters acting simultaneously. While the set of actions
is usually small, the ontologies of objects in the world tend
to be rather large and rich.

The combination of complex worlds and real-time
dynamics makes for an exciting and enjoyable
environment, but it complicates development of
autonomous agents. Consequently, typical MUD agents
fill functional or aesthetic roles only. Restricted to
shopkeepers, village gossips, or inert background
characters, autonomous agents are neither designed nor
expected to live a life similar to that of player characters.

We decided to design an intelligent agent that, unlike
traditional MUD agents, would live in a MUD as a player
character. This agent would have access to the same
sensory information, the same repertoire of actions, and be
subject to the same survival requirements as human-
controlled characters. Such an agent would need to cope in
a world populated with independent, hostile agents, while
maintaining its goals of survival and self-advancement.

This paper presents our work towards constructing such
an agent. Our architecture, which draws from both
symbolic AI and behavior-based robotics, illustrates the
difficulties in trying to apply traditional symbolic AI
approaches to such highly dynamic domains. We hope
that the work presented in this paper can provide insight

for artificial agent builders working in domains similar to
MUDs, such as massive multi-user systems and role-
playing games.

In the following paragraphs we present the architecture for
the being-in-the-world, as well as details of the MUD
environment. A later section will discuss the benefits and
problems of our approach and, more generally, of
implementing an intelligent agent living in a dynamic
environment.

Related work

The problem of implementing artificially intelligent game
agents and bots is as old as gaming itself, and the classic
solution is to encode the action selection code as a simple
state machine (Rabin 2000). For simple game agents this
is often sufficient – as seen from the large number of
existing Quake and Unreal bots. However, there is also
work underway on using full-blown symbolic techniques,
such as forward-chaining production systems (Laird
2000), to make game agents substantially smarter.

In MUDs and adventure games in particular, one notable
related project is the Angband Borg, an automatic player
for the Rogue-like adventure game Angband (Harrison
2000). The Borg serves as an aide that the player can use
to perform routine tasks in the game, such as picking out
the optimal combination of armor to wear, or
automatically approaching the closest monster. The Borg
plays the game from the player’s point of view using their
information about the world.

Architecture overview

Our agent, called being-in-the-world, is explicitly
designed to be able to survive in a MUD. Survival requires
at least the ability to navigate within the world, to
maintain health, to avoid hunger and thirst, and to
successfully interact with (potentially hostile) human

players and NPCs. A successful autonomous agent should
also endeavor to collect gold and resources, purchase
better equipment, and earn more experience to become a
more powerful character.

These goals require the agent to possess reasonably
sophisticated inference abilities. It must have a framework
to understand the world in which it lives. It must integrate
sensory information from the world into this framework.
Further, it must be able to determine, based on its
understanding framework and sensory information, the
reasonable courses of action to survive and succeed in the
game environment. Such abilities require a powerful and
efficient inference system.

Survival in a real-time hostile world also implies a need
for excellent real-time coping skills. Since we wanted the
agent to figure out at runtime the strategies for living in
the MUD, given some knowledge of the world and a few
immutable survival goals, a pre-compiled inference
network was not a sufficiently flexible solution. Without
substantial limitations on the inference powers of the
engine, we worried that inference speed would be
inadequate to handle the real-time aspect of the MUD.
Moreover, certain aspects of interacting with the
environment, such as perceiving the surroundings or
carrying out routine actions, did not conceptually belong
in an inference mechanism. We thus decided to employ a
separate, independent mechanism for coping with real-
time world interactions.

These two constraints – of skillful coping with the world
on one hand, and of logical inference on the other –
suggested a natural division of the agent architecture into
two systems, responsible for coping and thinking.

Hybrid architecture

being-in-the-world employs a two-level hybrid
architecture: Descartes, the reasoning module, which
includes the agent's internal state, world understanding,
and goal maintenance, and Heidegger, the real-time
coping module, which tries to satisfy the agent’s most
immediate goals while dealing with the world in a simple
but timely manner. The modules run asynchronously and
largely independently of each other. Communication
between modules is accomplished through a queue of
goals and a shared world ontology.

Descartes

The agent's planning layer is essentially a logic-based
truth maintenance system and reasoning engine (Forbus
and de Kleer 1993). Rules about the world resemble the
following example:

 (rule ((:TRUE (IS-A ?subtype
 ?supertype))
 (:TRUE (INSTANCE-OF ?x
 ?subtype)))
 (rassert! (INSTANCE-OF ?x
 ?supertype)))

which, for instance, states that any object that is an
instance of a subtype is also an instance of all supertypes.
Then, if the agent would come across some item
KNIFE123 that was an instance of a knife, and it knew
that a knife is a subtype of a weapon, it would infer that
KNIFE123 is also an instance of a weapon.

Descartes would then use the continuously updated
knowledge of the world (provided by Heidegger) to
decompose its high-level goals to a graph of simple,
immediate goals. For example, Descartes understands
weapons and money – that some weapons are better than
others, that it needs gold to acquire them, that other agents
have gold, and that the way to get that gold is to kill
someone and loot their body. When the '(ACQUIRE-
ITEM KNIFE123)' goal is activated within Descartes, the
system would determine that:

• It needs gold to purchase the knife

• It is poor, so it activates the ‘(ACQUIRE-GOLD)’ goal.

• That the ‘(ACQUIRE-GOLD)’ goal can be satisfied by
killing and looting.

• It knows that street sweepers are weak creatures, so it
activates the ‘(KILL-CREATURE sweeper)’ goal.

Because Descartes by itself cannot actually do anything, it
communicates its conclusions to Heidegger, which then
tries to meet Descartes' goals. The goals are expressed as
concrete actions in the world, such as going somewhere,
picking things up, attacking, and so on.

Heidegger

The coping layer is responsible for sensing and affecting
the MUD world. It integrates the information from sensory
inputs into the knowledge base, and carries out simple
actions/goals in the world. It also includes closed-loop
reactions triggered when the agent’s survival is threatened
and immediate action is required.

Heidegger copes with the world in the sense that it knows
how to perform concrete actions in the world, and includes
built-in reactions to events that cannot wait to be
processed by the thinking layer. Thus, the coping layer
knows how to get to locations in the MUD, how to pick up
objects, or how to attack creatures, and performs
appropriate actions per Descartes’ request. However, in
high-priority situations such as getting attacked, it will
deal with the situation directly, ignoring the goals received
from the upper layer.

Heidegger sieves the sensory information arriving from
the MUD world, pulling out the relevant sensory inputs
and communicating them to Descartes by updating the
shared world ontology. For example, upon coming across
a street sweeper, Heidegger would assert the following
statements in the ontology:

 (CRITTER 103 sweeper)
 (EXISTS 103)
 (WEAK 103)

which means that Descartes now knows that CRITTER
103 is a sweeper, that an instance of a sweeper exists
somewhere in the world (Heidegger remembers where),
and that this sweeper is weaker than the agent.

Heidegger's other task is to carry out simple commands
requested by Descartes. There is a small set of commands
that corresponds to what human users can do (such as
LOOK, WIELD, HIT, GET, and so on), and a set of
macro-commands that let the agent navigate about the
world (such as GOTO-ROOM, WANDER, and so on).
The commands (and they really are both goals and
commands) are carried out opportunistically – that is, if
something cannot be done at the moment, such as buying
some item, it will remain on the queue in hope that it can
be carried out later.

The MUD world

The environment in which being-in-the-world lives is an
existing MUD server named ScryMUD (Greear 1999). We
chose to use an existing MUD to minimize the temptation
to over-engineer the environment – the only changes made
to the original server were creating a machine-readable
display mode and adding object IDs to the list of object
properties visible to the agent. The agent communicates
with the MUD like any other player character, via a text-
based TCP socket connection.

Discussion

Our choice of using a hybrid architecture was motivated
mainly by the application of hybrid systems in robotics,
where they have been successfully used to combine low-
level behavior-based networks with higher-level symbolic
reasoning (see Arkin (1998) for an overview).

There are several clear advantages to hybrid architectures.
The separation makes it possible to use vastly different
architectures for the 'thinking' and 'coping' aspects of the
agent, which is especially good given the system
constraints – the need for inferential power in Descartes,
and need for good reactivity in the Heidegger. It also
allows the two layers to maintain a high degree of
independence, which is critically important for Heidegger,

who commonly must drop everything and react quickly to
immediate dangers.

There are, of course, design choices and limitations to this
architecture.

The main problem, which is common in hybrid systems in
general, is that of the interface between modules. There
appears to be no good way of interfacing the deliberative
and the reactive systems. Our solution – world ontology
updates going up from Heidegger and goal queue updates
coming down from Descartes – reflects our conviction that
the deliberative system should not direct but only suggest
the possible course of action (it is admittedly influenced by
the Agre and Chapman model (1990)). But the solution is
somewhat ad-hoc – it is not clear what the implementation
of a good, clean interface between the two should be.

Another set of difficulties arose due to our choice of
architecture for the deliberative system. While the truth
maintenance system was excellent at logical inference, a
necessary feature for the deliberative layer, it lacked
several critical features for modeling the agent’s behavior.
We encountered two serious limitations in our work. First,
the system could not effectively model continuous
quantities like the agent’s store of gold and health points.
Ideally, we should represent the amount of gold owned by
the agent as an assertion like ‘(HAVE-GOLD x)’, where x
is some natural number. This representation was possible,
but when the quantity of gold changed, the assertion
would need to be replaced by another statement ‘(HAVE-
GOLD y)’. The fact database quickly became
overburdened with hundreds of such statements, one for
each quantity of gold the agent ever owned. Worse, the
system would maintain an entire truth graph from each
such statement, consuming an enormous amount of
resources. A future version of the system will have to
include better support of continuously varying quantities –
perhaps as qualitative numeric relations rather than direct
numeric representations.

Second, and more seriously, we realized that we needed a
better integration of facts and goals. When Descartes
needed to communicate an action goal to Heidegger, it
would do so by adding it to the shared goal queue. This
communication occurred as a side effect of the triggering
of an inference rule. However, this mode of
communication became problematic in cases when some
precondition of an inference toggled between being true
and false – which caused invalidation and revalidation of
all subsequent inferences. Goals were enqueued as a side-
effect of certain inferences about the world, but our
reasoning engine did not have much support for side-
effects: due to the caching in the TRE the goals associated
with the inference rule would not be enqueued again when
the inference became true a second time. The next version
of the system will include either a better layer interface or

an extended inference engine that better supports desired
side effects.

We have implemented a simple working version of being-
in-the-world, written in Common Lisp. The system,
despite the above problems, is capable of exploring the
MUD world, acquiring weapons, attacking and killing
creatures, looting their bodies, and surviving – for a time.

Summary

In the end, we are very pleased with having chosen
survivability as the primary goal in the design of this
agent. It forced us to deal directly with the constraints of
the environment, and to find ways of integrating
deliberation and reactivity. Such an effective integration
was crucial to solving the problems of implementing both
high-level cognition and successful coping skills in a
dynamic real-time environment. Unfortunately, the
unforeseen problems with our truth-maintenance module
prevented us from making the agent as robust as planned.
Our future attempts will concentrate on improving the
deliberative architecture and its interface to the coping
mechanism. We will also explore minimizing the
background knowledge necessary to bootstrap the agent,
and adding rudimentary natural language understanding
and modeling of other agents' goals.

Bibliography

Agre, P. and Chapman, D., 1990. "What Are Plans For?"

Robotics and Autonomous Systems, Vol. 6, pp. 17-34.
Arkin, A., 1998. Behavior-based Robotics. MIT Press,

Cambridge, MA.
Forbus K. and de Kleer, J., 1993. Building Problem

Solvers. MIT Press, Cambridge, MA.
Greear, B., 1999. ScryMUD 1.9. http://scry.wanfear.com/
Harrison, B., 2000. The Angband Borg.

http://www.phial.com/angborg/
Laird J., et al., 2000. The Soarbot Project.

http://ai.eecs.umich.edu/~soarbot/
Rabin, S., 2000. “Designing a General Robust AI

Engine”. In DeLoura, M. Game Programming Gems.
Charles River Media, Rockland, MA.

