
Hierarchical Parallel Markov Models of Interaction

Robert Zubek and Ian D. Horswill

Northwestern University Computer Science
1890 Maple Ave, 3rd floor, Evanston, IL 60201

rob, ian@cs.northwestern.edu

Abstract
Finite state techniques are popular in entertainment
software production, but they complicate the modeling of
certain aspects of social engagement. In this paper we
examine the problem of building probabilistic finite-state
interaction models that allow both hierarchical composition
of behaviors, and their parallel engagement. Finally, we
propose an extension that resolves the difficulties for a
class of common cases.

Interaction Modeling

Intelligent game agents must be able to interact with
players, to present themselves as actual inhabitants of the
virtual world. Popular approaches to interaction, such as
static conversation trees and exchanges of pre-recorded
blurbs, are widely recognized as insufficient, but a more
generative natural language interaction will require a
different approach to the underlying representation.

Interaction modeling in games is constrained by the
demands of authoring, believability, and performance. The
underlying mechanism must allow for easy behavior
authoring, because developers require precise control over
what the system will do at runtime, in order to provide
enjoyable and engaging user experience, with specific
aesthetic effects (Hunicke, LeBlanc and Zubek 2004).
Additionally, developers want the behavior of the system
to be believable, resembling the relevant aspects of human
activity; ideally, believable behavior should be produced
out of patterns matched against the game state, rather than
being completely hand-scripted by a writer. Finally, the
mechanisms must be computationally efficient, producing
desirable behavior in only a fraction of total compute
cycles.

For these reasons, simple techniques such as finite state
machines (FSMs) remain very popular. Hand-crafted
FSMs are routinely used to implement character behavior,
since they are simple to author, intuitive to debug, and
efficient to compute. In character interaction and
conversation, simple dialog trees are very popular.

In domains where the inputs are noisy or ambiguous—
such as in tracking human activity or language
processing—stochastic generalizations are often used

instead. Hidden Markov models (HMMs), for example,
improve robustness by allowing for uncertainty; they
continually re-estimate the probability of being in a given
state, based on observed inputs.

The Hierarchical Parallel Problem
Rich, believable communication requires engagement in
different social protocols, and broad competence in human
conversational moves. Implementing the system using a
large dialog network is clearly problematic. First, it is an
authoring nightmare: finite-state models with non-trivial
numbers of spaces are difficult to design and debug.
Second, probabilistic implementations become
computationally expensive, because HMM belief
computation is superlinear in the number of states.

We can reduce the complexity of the system by
decomposing the FSM into smaller, coupled FSMs.
Consider a typical fantasy role-playing game. When
building a shopkeeper agent, for example, we can
decompose the selling interaction into the threads of
deciding on an item, evaluating the item, haggling about
the price, and so on; the evaluation thread can consist of
praising the workmanship, pointing out features, or
defusing criticism; praising the workmanship can then
finally bottom out in particular speech acts. The
decomposed system would be more efficient. And since
individual modules can be developed independently and
reused, it should also be cheaper to develop.

A natural implementation of such decomposition would
be as an augmented transition network (ATN) or
pushdown automaton (PDA), which are essentially FSMs
that can “call” other FSMs that later “return” to the
original FSM.

However, in real communication, multiple interactions
can be interleaved concurrently. For example, consider the
barter example above. Barter includes the child protocols
of haggling and praising, simplified versions of which are
shown as the linear chains H and P in Figure 1. In
practice, these protocols are often, but not always,
interleaved, as in: P1 H1 H2 P2 P3 P4 H3 H4. To follow
the progress of the barter, the system must therefore be
able to accept arbitrary interleavings of these sequences

without having to merge them into one (very large) FSM
containing separate paths for every possible interleaving.

We therefore want our system to support not only
hierarchical representations of social protocols, but
parallel instantiations of them. Unfortunately, PDAs do
not support concurrent execution. In the remainder of this
paper, we will show how parallel and hierarchical
structure can be modeled using a set of parallel, coupled,
Markov models (essentially probabilistic FSMs). This
allows flexible, robust interaction using a small number of
computationally efficient, easily authored finite-state
models.

HMM Essentials and Extensions

We implement coupling through extensions to the hidden
Markov model (HMM) estimation. HMMs are effectively
FSMs that keep track of a probability distribution over all
possible states rather than a single “current state”. While
somewhat more expensive than FSMs, HMMs are much
more robust when the input is insufficient to
unambiguously determine the current state of the system.

The formal definition is as follows. Let  = [0, 1] be the
subset of  representing valid probability values. A hidden
Markov model M is a tuple ‹ S, A, p, q ›, where:

· S = { s1, s2, … } is the set of possible states, with a

unique initial state s1,
· A = { γ1, γ2, … } is the set of discrete communicative

actions (speech acts, etc.) that can be observed,
· p : S × S →  gives the probability of transitioning

from one state to another, and
· q : S × A →  gives the probability of observing a given

action when the system is in a given state.

To indicate the semantics of the probability functions,
we will write q (γ | s) as the probability of action γ being
observed at state s, and p (s’ | s) as probability of transition

to s’ from s, where ∀s’ ∈ S: ∑
∈Ss

p (s’ | s) = 1.

Note that this defines action observation as dependent
on state, rather than state transitions. These two
representations are equally valid and easily convertible,
using methods such as those described by Jelinek (1997).
For our purpose, however, state-based observation will
simplify the description.

Estimating the Current State
The precise “state” of interaction is not observable at any
given time. However, an HMM allows us to estimate it
based on a history of observations.

The belief distribution over all states is a function
b : S ×  → , written as bt (s), which is the system’s
estimate of the probability of the process being in state s at
time t. The belief can be computed using popular forward
algorithm for hidden Markov models (Jelinek 1997,
Jurafsky and Martin 2000) extended to the state-based
observation model:

bt (s) = ∑
∈Ssi

 p (s | si) q (γt | s) bt-1 (si) η (1)

Here η is a normalization value use to force bt to sum to
1. Furthermore, for the initial time slice t = 1, define bt
(s1) = 1, and bt (s) = 0 for all s ≠ s1. We will not discuss
how to interpret the belief distribution function here, but
rather jump right into the extensions—the interested
reader is encouraged to reference Zubek (2004) or Roy et
al. (2000) for more details.

When the system has to choose actions based on belief
state, then the HMM is called a partially observable
Markov decision problem or “POMDP”. We then assume
there is a policy π : (S → ) → A that maps belief states to
actions.

Extensions
We will build the system from a collection of concurrent
HMMs, coupled to model the hierarchical dependencies
between the different parts of the model. This is done by
extending the approach, to move elements unnecessary for
state estimation out of belief computation. We now look at
the technical details of the coupling mechanism, and the
following section will detail how to use it to implement
certain kinds of hierarchical dependence.

Action Observation Decomposition
The belief estimation equation (1) requires that the
function q (γ | s) be provided. Typically, its computation is
treated as atomic. However, we can use Bayes’ rule to

H1: player-asks-for-price (e.g. “What do you want for this?”)

H2: agent-presents-offer (e.g. “I’ll take a health potion”)

H3: player-counters (e.g. “How about a health scroll?”)

H4: agent-reacts (e.g. “It’s a deal.”)

P1: player-expresses-liking (e.g. “This looks pretty good.”)

P2: agent-praises (e.g. “It’s top quality. I just got it.”)

P3: player-finds-flaw (e.g. “But there’s a button falling off.”)

P4: agent-defuses (e.g. “I’ll fix that for you right away.”)

Figure 1. Sample threads.

decompose it into two simpler functions and the
normalization value η:

q (γ | s) = et (γ) g (s | γ) η (2)

The function e represents evidence estimation: it is the

confidence level that some communicative action γ was
actually observed from the system input at the given time,
independently of the state. It categorizes the current input
into likely speech acts, interpersonal actions, and other
expression types, based on state-independent surface
features. For example, the probability of a request should
be high for a phrase beginning with “can you”, but rather
low if it begins with “you can”. The function is really a
probability distribution over all speech acts, and it can
suggest multiple non-zero values: a phrase such as “yeah”
could be simultaneously interpreted as a possible
confirmation, as a positive response to a yes-or-no
question, as a turn-taking acknowledgement, and so on.
Estimators can be implemented using a simple, external
pattern-matching mechanism.

The expectation function g then ties e to the specifics of
the situation; it is the likelihood of observing that type of
communication at the given state. For example, given the
observation of a request, g specifies whether a request is
likely in the given situation. This way, a protocol can
specify which communicative acts accomplish movement
through its different stages.

The multiplication of e and g accomplishes ambiguity
resolution. Conceptually, e represents the likely
interpretation of the input utterance, while g specifies if
the interpretation makes sense for that state of
conversation; their multiplication returns zero when either
the input fails to fit the interpretation, or the interpretation
is unexpected. The resulting value of q thus represents the
intersection of what was recognized with what was
expected.

This separation may seem unnecessary, but its economy
of expectation modeling aids the designer, decoupling
input category recognition from its interpretation. The
separation also achieves a useful architectural
simplification. Evidence estimation is independent from
states; therefore it can be computed separately from belief
estimation, as seen in Figure 2. This will assist us in
abstracting out dependencies.

Model Coupling
Using this separation, we now present an inspection
mechanism for coupling the independent Markov models.
Inspection allows the state belief distribution over one
model to serve as evidence for belief calculation in another
model in the system.

Define it formally as follows. Given two HMMs A and
B, with states sA ∈ SA, sB ∈ SB, for each case when sA
inspects sB, we augment AA with a unique action γ’ that
signifies the inspection, and define et (γ’) = bt-1 (sB), and
g (γ’, sA) = 1. This makes the belief of the state sA
dependent on the belief in sB from the previous time slice,
but without actually joining the spaces.

Topic Tracking
In most interactions, there is additional state information,
such as the object being bartered for, which is not easy to
represent within the state graph of an FSM. For example,
in the conversational robot by Roy, Pineau and Thrun
(2000), the conversation includes separate states for the
different TV stations one could talk about, such as want-
NBC-info, want-CBS-info, or want-ABC-info; for the
different locations where the robot could be ordered to go,
such as send-robot-to-kitchen, send-robot-to-bedroom,
and so on. This is necessary because FSMs are ultimately
propositional representations, meaning they cannot use
variables. A common resolution is to represent variable
and value combinations directly as states in the state
space. However, the number of possible combinations can
get unwieldy.

In our work, we implement a different approach to
simple variable binding, using external variables linked to
evidence estimation. We track a small number of task-
specific variables such as the current topic, the current
item being bartered, etc., and represent them
deterministically. Binding one of these variables then
becomes one of the possible actions the system can
perform. This is similar in spirit to Agre and Chapman’s
deictic representation (1987) in that there are only a few
variables that are bound to values through actions.
However, in deictic representation, those variables are
implemented by perceptual attention.

The variable bindings are available for inspection by
estimators, to determine the belief states of Markov
models. For the details of their implementation, as well as

Figure 2. Functional view of belief distribution
computation.

additional architectural considerations, please consult the
forthcoming technical report (Zubek 2005).

Hierarchical Dependencies as Coupling
Finally, we describe how to model hierarchical control
using model coupling. We would like to identify the
following two forms of causal dependencies as salient for
hierarchical models:

1. State dependence. This is when the state of one
model influences the state of another. For example, a
purchase interaction may need to be rolled back into
a previous state, if haggling didn’t succeed.

2. Model dependence. This is when the state of one
model engages or disengages an entire other model.
For example, starting an evaluation could enable a
number of specialized behaviors, which get disabled
once evaluation ends.

We reduce these dependencies to coupling, as follows.

State Dependence
State dependence happens when state belief in one model
influences state belief in another model. Consider two
states, the controlling state sC ∈ SC, and the target state
sT ∈ ST, such that the belief in the controlling state is
intended to influence the belief in the target state.

We eliminate this dependence via inspection. Set sT to
inspect sC via some modification function f: define some
unique action γC to correspond to the inspection, and
define et (γC) = bt-1 ◦ f (sC), and g (γC, sT) = 1. The result is
that the target’s belief value will be a function of the
controller’s previous belief value.

Model Dependence
Model dependence happens when the state of one
interaction can influence the engagement in an entire
other interaction, as in push-down hierarchical models.

We eliminate this dependence via inspection. Consider
the target state space ST and some controlling state sC
belonging to a different model. Allow ST to contain a
unique disable state s0, with incoming links from all
states, and an outgoing link to the initial state s1; belief
distribution over s0 signifies confidence that the entire
model is disengaged.

Specify that s0 inspects sC in two ways: there exist two
unique actions γE, γD that correspond to the engagement
and disengagement of the submodel, mediated through
some function f. Define et (γE) = bt-1 ◦ f (sC), et (γD) = 1 –
bt-1 ◦ f (sC), and expectations g (γD, s0) = 1, and
g (γE, s1) = 1.

We then use these two dependency reductions of state
and model dependence, to translate causally dependent
models into independent, weakly coupled ones.

Results

The resulting approach implements a hierarchy of
parallel, coupled HMMs, each of which is very cheap to
track.

Two systems use this approach to implement
conversational interaction. The first, a conversational
“sim” titled The Breakup Conversation, is a parody of the
conversation at the end of a romantic relationship. The
player starts out as someone involved in a failed
relationship, who decides to end it via internet chat, and
the role of the soon-to-be-ex is played by the computer.
Figure 3 presents a fragment of the system’s model
hierarchy.

The second system is Xenos, an NPC for the fantasy

game Neverwinter Nights, which acts as a shopkeeper:
sells items, introduces quests, or offers some bar goods,
via natural language conversation. Its utterances are
contextually coherent, but stylistically rough, to convey the
idea that it does not really understand the language. An
example of an exchange with Xenos is presented in Figure
4.

Figure 3. Fragment of the weakly coupled hierarchy from

The Breakup Conversation.

Both systems contain redundant models of interaction,
on different levels of generality—Table 1 presents an
overview of the different HMMs from the two
demonstration systems. All of these models are active at
the same time, all the time, and monitor the ongoing
interaction; if the player steps outside of some specific
model’s area of competence, for example by using an
unexpected speech act, the interaction will fall back onto
more general components, which will deal with the
situation. The result is an interaction system that exhibits
the desirable hierarchical parallel property: the interaction
retains hierarchical composition of sub-interactions that
can affect over each other, but at the same time allows for
parallel and independent engagement on different levels of
generality. The redundant representation softens the
performance drop-off at the edge of competence, and can
be used to mimic some of the human ways of dealing with
error.

The systems are exceedingly efficient. A recent version
of the Conversation is built on a set of 75 coupled HMMs
and, as described in a forthcoming report (Zubek 2005), it
takes less than 30ms on the average to process an
utterance —including parsing, evidence estimation, belief
computation, and output production. Indeed, most of the

Xenos conversation fragment.
Computer’s utterances and emotes in boldface:

Player says: hi there
Xenos says: welcome
Player says: i need a new sword
Xenos glances
Xenos says: i have for you sword
Player says: how is it
Xenos says: are you looking for a job?
Xenos says: it's a dwarven sword
Player says: how much
Xenos nods: hm
Xenos says: i'll trade for a health potion
Xenos glances
Player says: i don't have one
Xenos says: too bad
Player says: about that job though
Player says: what is it
Xenos says: i need to get a letter from
 the mayor
Xenos says: could you go bring it from the
 mayor of our town?

Figure 4. Xenos conversation fragment, including quest
and item threads.

Shared Spaces

Low level monitors:
 Conversation timer
 Silence monitor
 Monologue monitor

Ambient movement:
 Fidget machine
 Turn enforcement
 Ambient emote
 Stock response
 Turn monitor
 Topic monitor

Insult management:
 Direct insult
 Indirect insult
 Insult accumulation

General routines:
 Topic recognized but not the form
 Question recognized but not topic
 Question about object
 Question about health
 Request general
 Request item
 Disagreement
 Player evaluation
 Agent evaluation
 Condemnation monitor

Conversation structure:
 Greeting
 Intro conversation
 Outro conversation

Breakup-specific

Breakup intro:
 Allude to breakup
 Giving in monitor
 Guilting coordinator

Guilting: Self-pity
 Self-criticize
 Reject compliment
 “You must hate me”
 “Why are you mean”
 “Will you help me”

Guilting: Indignation
 “I thought you loved me”
 “I thought you cared”
 “I don’t deserve this”
 “How can you do this”

Guilting: Pleading
 Beg for second chance
 Promise change
 “But I love you”

Guilting: Reasoning
 Guess at reason
 Demand reason
 Evaluate reason
 Treat as excuse
 Deny reason

Panicking:
 Silence
 Impatience monitor
 Resignation monitor
 Rejection monitor
 Start panic

Xenos-specific

Quests:
 Quest monitor
 Perform quest injection
 Deal with agreement
 Deal with rejection
 Rush the player

Special routines:
 Job request
 What question
 Where question
 Payment question
 Evaluate object
 Barter for object

Table 1. Outline of the different spaces used in the two implementations.

computation is spent running an off-the-shelf parser—
without parsing, the HMM computation takes less than
0.5ms on the average.

In our experience, the separation of interaction elements
into distinct models simplifies authoring, and the weak
coupling limits their possible interactions, simplifying
debugging. Finally, good preprocessing and compile-time
optimizations make the HMM calculations very cheap.
Act estimation can be implemented using inexpensive
pattern matching, belief distribution can be optimized as
matrix multiplication, and action production can be done
as cheap template filling.

Related Work
Finite-state techniques are popular in dialog and
interaction modeling, and “[m]ost commercially available
dialogue systems use some form of finite-state dialogue
modeling” (McTear 1998). Cole et al. (1995) present a
good overview of these approaches, in the Survey of the
State of the Art in Human Language Technology, with
more detailed background information is available in
Grosz et al. (1986).

Stochastic techniques have been popular in language
modeling on the utterance level (Jelinek 1997, Roche and
Schabes 1997), and have been recently extended to dialog
modeling (Pineau, Roy and Thrun 2001, Young 1999,
Levin and Pieraccini 1997). Hierarchical HMMs (Fine,
Singer and Tishby 1998) and related approaches
(Ghahramani and Jordan 1995, Saul and Jordan 1995) are
currently being investigated for dialog engagement.

Related work from entertainment includes
developments on managing dialog as part of a larger
action selection architecture (Loyall 1997, Mateas and
Stern 2002). Also, entertainment products routinely
employ pattern matching techniques such as those used in
chatterbots (Mauldin 1994, Hutchens 1998).

Acknowledgements

Special thanks to Robin Hunicke, Praveen Paritosh, and
Ayman Shamma for their comments on this work.

References
Cole, R. A., Mariani, J., Uszkoreit, H., Zaenen, A., Zue, V.,

eds. 1995. Survey of the State of the Art in Human Language
Technology. National Science Foundation, et al. Reprinted at
Cambridge: Cambridge University Press, 1986.

Fine, S., Singer, Y., Tishby, N. 1998. The Hierarchical
Hidden Markov Model: Analysis and Applications. Machine
Learning, 32: 41.

Ghahramani, Z., and Jordan, M. 1995. Factorial Hidden
Markov Models. Proceedings of the Conference on Advances in

Neural Information Processing Systems (NIPS), vol. 8, pp. 472-
478.

Grosz, B. J., Jones, K. S., and Webber, B. L., eds. 1986.
Readings in Natural Language Processing. Los Altos, CA:
Morgan Kaufmann.

Hunicke, R., LeBlanc, M., Zubek, R. MDA: A Formal
Approach to Game Design and Game Research. Proceedings of
the AAAI Workshop on Challenges in Game AI, AAAI Tech
Report WW-04-04. Menlo Park, CA: AAAI Press.

Hutchens, J. 1998. Introducing MegaHAL. NeMLaP / CoNLL
Workshop on Human-Computer Conversation. Association for
Computational Linguistics.

Jelinek, F. 1997. Statistical Methods for Speech Recognition.
Cambridge, MA: MIT Press.

Jurafsky, D., Martin, J. H. 2000. Speech and Language
Processing. Englewood Cliffs, NJ: Prentice Hall.

Levin, E., Pieraccini, R. 1997. A Stochastic Model of
Computer-Human Interaction for Learning Dialogue Strategies.
Proceedings of Eurospeech ’97, pp. 1883-1886. Rhodes, Greece.

Loyall, A. B. 1997. Believable Agents: Building Interactive
Personalities. PhD Dissertation, School of Computer Science.
Pittsburgh: Carnegie Mellon University.

Mateas, M., Stern, A. 2002. Architecture, Authorial Idioms
and Early Observations of the Interactive Drama Façade.
Technical Report CMU-CS-02-198, School of Computer
Science. Pittsburgh: Carnegie Mellon University.

Mauldin, M. 1994. Chatterbots, TinyMUDs, and the Turing
Test: Entering the Loebner Prize Competition. Proceedings of
AAAI-94. Menlo Park, CA: AAAI Press.

McTear, M. F. 1998. Modelling spoken dialogues with state
transition diagrams: experiences of the CSLU toolkit.
Proceedings of the International Conference on Spoken
Language Processing, vol. 4, pp. 1223-1226. Sydney: Australian
Speech Science and Technology Association, Incorporated

Pineau, J., Roy, N., Thrun, S. 2001. A Hierarchical Approach
to POMDP Planning and Execution. Workshop on Hierarchy
and Memory in Reinforcement Learning (ICML). Williams
College, MA.

Roche, E., Schabes, Y. 1997. Finite State Language
Processing. Cambridge, MA: MIT Press.

Roy, N., Pineau, J., Thrun, S. 2000. Spoken Dialogue
Management Using Probabilistic Reasoning. Proceedings of the
38th Annual Meeting of the Association for Computational
Linguistics.

Saul, L. K., Jordan, M. I. 1995. Boltzmann Chains and
Hidden Markov Models. Proceedings of the Conference on the
Advances in Neural Information Processing Systems (NIPS), vol.
7. Cambridge, MA: MIT Press.

Young, S. 1999. Probabilistic Methods is Spoken Dialogue
Systems. Proceedings of the Royal Society, September 1999.
London.

Zubek, R. 2004. Character Participation in Social Interaction.
Proceedings of the AAAI Workshop on Challenges in Game AI,
AAAI Tech Report WW-04-04. Menlo Park, CA: AAAI Press.

Zubek, R. 2005. Forthcoming Ph.D. dissertation, Computer
Science Department, Northwestern University.

