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Abstract 
Finite state techniques are popular in entertainment 
software production, but they complicate the modeling of 
certain aspects of social engagement. In this paper we 
examine the problem of building probabilistic finite-state 
interaction models that allow both hierarchical composition 
of behaviors, and their parallel engagement. Finally, we 
propose an extension that resolves the difficulties for a 
class of common cases. 

Interaction Modeling 

Intelligent game agents must be able to interact with 
players, to present themselves as actual inhabitants of the 
virtual world. Popular approaches to interaction, such as 
static conversation trees and exchanges of pre-recorded 
blurbs, are widely recognized as insufficient, but a more 
generative natural language interaction will require a 
different approach to the underlying representation.  

Interaction modeling in games is constrained by the 
demands of authoring, believability, and performance. The 
underlying mechanism must allow for easy behavior 
authoring, because developers require precise control over 
what the system will do at runtime, in order to provide 
enjoyable and engaging user experience, with specific 
aesthetic effects (Hunicke, LeBlanc and Zubek 2004). 
Additionally, developers want the behavior of the system 
to be believable, resembling the relevant aspects of human 
activity; ideally, believable behavior should be produced 
out of patterns matched against the game state, rather than 
being completely hand-scripted by a writer. Finally, the 
mechanisms must be computationally efficient, producing 
desirable behavior in only a fraction of total compute 
cycles. 

For these reasons, simple techniques such as finite state 
machines (FSMs) remain very popular. Hand-crafted 
FSMs are routinely used to implement character behavior, 
since they are simple to author, intuitive to debug, and 
efficient to compute. In character interaction and 
conversation, simple dialog trees are very popular.  

In domains where the inputs are noisy or ambiguous—
such as in tracking human activity or language 
processing—stochastic generalizations are often used 

instead. Hidden Markov models (HMMs), for example, 
improve robustness by allowing for uncertainty; they 
continually re-estimate the probability of being in a given 
state, based on observed inputs.  

The Hierarchical Parallel Problem 
Rich, believable communication requires engagement in 
different social protocols, and broad competence in human 
conversational moves. Implementing the system using a 
large dialog network is clearly problematic. First, it is an 
authoring nightmare: finite-state models with non-trivial 
numbers of spaces are difficult to design and debug. 
Second, probabilistic implementations become 
computationally expensive, because HMM belief 
computation is superlinear in the number of states.  

We can reduce the complexity of the system by 
decomposing the FSM into smaller, coupled FSMs. 
Consider a typical fantasy role-playing game. When 
building a shopkeeper agent, for example, we can 
decompose the selling interaction into the threads of 
deciding on an item, evaluating the item, haggling about 
the price, and so on; the evaluation thread can consist of 
praising the workmanship, pointing out features, or 
defusing criticism; praising the workmanship can then 
finally bottom out in particular speech acts. The 
decomposed system would be more efficient. And since 
individual modules can be developed independently and 
reused, it should also be cheaper to develop. 

A natural implementation of such decomposition would 
be as an augmented transition network (ATN) or 
pushdown automaton (PDA), which are essentially FSMs 
that can “call” other FSMs that later “return” to the 
original FSM.  

However, in real communication, multiple interactions 
can be interleaved concurrently. For example, consider the 
barter example above. Barter includes the child protocols 
of haggling and praising, simplified versions of which are 
shown as the linear chains H and P in Figure 1. In 
practice, these protocols are often, but not always, 
interleaved, as in: P1 H1 H2 P2 P3 P4 H3 H4. To follow 
the progress of the barter, the system must therefore be 
able to accept arbitrary interleavings of these sequences 



without having to merge them into one (very large) FSM 
containing separate paths for every possible interleaving. 

We therefore want our system to support not only 
hierarchical representations of social protocols, but 
parallel instantiations of them. Unfortunately, PDAs do 
not support concurrent execution. In the remainder of this 
paper, we will show how parallel and hierarchical 
structure can be modeled using a set of parallel, coupled, 
Markov models (essentially probabilistic FSMs). This 
allows flexible, robust interaction using a small number of 
computationally efficient, easily authored finite-state 
models. 

 

HMM Essentials and Extensions 

We implement coupling through extensions to the hidden 
Markov model (HMM) estimation. HMMs are effectively 
FSMs that keep track of a probability distribution over all 
possible states rather than a single “current state”. While 
somewhat more expensive than FSMs, HMMs are much 
more robust when the input is insufficient to 
unambiguously determine the current state of the system. 

The formal definition is as follows. Let  = [0, 1] be the 
subset of  representing valid probability values. A hidden 
Markov model M is a tuple ‹ S, A, p, q ›, where: 

 
· S = { s1, s2, … } is the set of possible states, with a 

unique initial state s1, 
· A = { γ1, γ2, … } is the set of discrete communicative 

actions (speech acts, etc.) that can be observed, 
· p : S × S →  gives the probability of transitioning 

from one state to another, and 
· q : S × A →  gives the probability of observing a given 

action when the system is in a given state. 
 

To indicate the semantics of the probability functions, 
we will write q (γ | s) as the probability of action γ being 
observed at state s, and p (s’ | s) as probability of transition 

to s’ from s, where ∀s’ ∈ S: ∑
∈Ss

p (s’ | s) = 1.  

Note that this defines action observation as dependent 
on state, rather than state transitions. These two 
representations are equally valid and easily convertible, 
using methods such as those described by Jelinek (1997). 
For our purpose, however, state-based observation will 
simplify the description.  

Estimating the Current State 
The precise “state” of interaction is not observable at any 
given time. However, an HMM allows us to estimate it 
based on a history of observations.  

The belief distribution over all states is a function 
b : S ×  → , written as bt (s), which is the system’s 
estimate of the probability of the process being in state s at 
time t. The belief can be computed using popular forward 
algorithm for hidden Markov models (Jelinek 1997, 
Jurafsky and Martin 2000) extended to the state-based 
observation model: 

 

bt (s)  =  ∑
∈Ssi

 p (s | si) q (γt | s) bt-1 (si) η (1) 

Here η is a normalization value use to force bt to sum to 
1. Furthermore, for the initial time slice t = 1, define bt 
(s1) = 1, and bt (s) = 0 for all s ≠ s1. We will not discuss 
how to interpret the belief distribution function here, but 
rather jump right into the extensions—the interested 
reader is encouraged to reference Zubek (2004) or Roy et 
al. (2000) for more details. 

When the system has to choose actions based on belief 
state, then the HMM is called a partially observable 
Markov decision problem or “POMDP”. We then assume 
there is a policy π : (S → ) → A that maps belief states to 
actions. 

Extensions 
We will build the system from a collection of concurrent 
HMMs, coupled to model the hierarchical dependencies 
between the different parts of the model. This is done by 
extending the approach, to move elements unnecessary for 
state estimation out of belief computation. We now look at 
the technical details of the coupling mechanism, and the 
following section will detail how to use it to implement 
certain kinds of hierarchical dependence.  

Action Observation Decomposition 
The belief estimation equation (1) requires that the 
function q (γ | s) be provided. Typically, its computation is 
treated as atomic. However, we can use Bayes’ rule to 

 
H1: player-asks-for-price  (e.g. “What do you want for this?”) 
 
H2: agent-presents-offer  (e.g. “I’ll take a health potion”) 
 
H3: player-counters  (e.g. “How about a health scroll?”) 
 
H4: agent-reacts  (e.g. “It’s a deal.”) 
 
 
P1: player-expresses-liking  (e.g. “This looks pretty good.”) 
 
P2: agent-praises  (e.g. “It’s top quality. I just got it.”) 
 
P3: player-finds-flaw  (e.g. “But there’s a button falling off.”) 
 
P4: agent-defuses  (e.g. “I’ll fix that for you right away.”) 
 

Figure 1. Sample threads. 



decompose it into two simpler functions and the 
normalization value η: 
 

q (γ | s) = et (γ) g (s | γ) η (2) 
 
The function e represents evidence estimation: it is the 

confidence level that some communicative action γ was 
actually observed from the system input at the given time, 
independently of the state. It categorizes the current input 
into likely speech acts, interpersonal actions, and other 
expression types, based on state-independent surface 
features. For example, the probability of a request should 
be high for a phrase beginning with “can you”, but rather 
low if it begins with “you can”. The function is really a 
probability distribution over all speech acts, and it can 
suggest multiple non-zero values: a phrase such as “yeah” 
could be simultaneously interpreted as a possible 
confirmation, as a positive response to a yes-or-no 
question, as a turn-taking acknowledgement, and so on. 
Estimators can be implemented using a simple, external 
pattern-matching mechanism. 

The expectation function g then ties e to the specifics of 
the situation; it is the likelihood of observing that type of 
communication at the given state. For example, given the 
observation of a request, g specifies whether a request is 
likely in the given situation. This way, a protocol can 
specify which communicative acts accomplish movement 
through its different stages. 

The multiplication of e and g accomplishes ambiguity 
resolution. Conceptually, e represents the likely 
interpretation of the input utterance, while g specifies if 
the interpretation makes sense for that state of 
conversation; their multiplication returns zero when either 
the input fails to fit the interpretation, or the interpretation 
is unexpected. The resulting value of q thus represents the 
intersection of what was recognized with what was 
expected.  

 

This separation may seem unnecessary, but its economy 
of expectation modeling aids the designer, decoupling 
input category recognition from its interpretation. The 
separation also achieves a useful architectural 
simplification. Evidence estimation is independent from 
states; therefore it can be computed separately from belief 
estimation, as seen in Figure 2. This will assist us in 
abstracting out dependencies. 

Model Coupling 
Using this separation, we now present an inspection 
mechanism for coupling the independent Markov models. 
Inspection allows the state belief distribution over one 
model to serve as evidence for belief calculation in another 
model in the system.  

Define it formally as follows. Given two HMMs A and 
B, with states sA ∈ SA, sB ∈ SB, for each case when sA 
inspects sB, we augment AA with a unique action γ’ that 
signifies the inspection, and define et (γ’) = bt-1 (sB), and 
g (γ’, sA) = 1. This makes the belief of the state sA 
dependent on the belief in sB from the previous time slice, 
but without actually joining the spaces. 

Topic Tracking 
In most interactions, there is additional state information, 
such as the object being bartered for, which is not easy to 
represent within the state graph of an FSM. For example, 
in the conversational robot by Roy, Pineau and Thrun 
(2000), the conversation includes separate states for the 
different TV stations one could talk about, such as want-
NBC-info, want-CBS-info, or want-ABC-info; for the 
different locations where the robot could be ordered to go, 
such as send-robot-to-kitchen, send-robot-to-bedroom, 
and so on. This is necessary because FSMs are ultimately 
propositional representations, meaning they cannot use 
variables. A common resolution is to represent variable 
and value combinations directly as states in the state 
space. However, the number of possible combinations can 
get unwieldy. 

In our work, we implement a different approach to 
simple variable binding, using external variables linked to 
evidence estimation. We track a small number of task-
specific variables such as the current topic, the current 
item being bartered, etc., and represent them 
deterministically. Binding one of these variables then 
becomes one of the possible actions the system can 
perform. This is similar in spirit to Agre and Chapman’s 
deictic representation (1987) in that there are only a few 
variables that are bound to values through actions. 
However, in deictic representation, those variables are 
implemented by perceptual attention. 

The variable bindings are available for inspection by 
estimators, to determine the belief states of Markov 
models. For the details of their implementation, as well as 

 

 
 

Figure 2. Functional view of belief distribution 
computation. 



additional architectural considerations, please consult the 
forthcoming technical report (Zubek 2005). 

Hierarchical Dependencies as Coupling 
Finally, we describe how to model hierarchical control 
using model coupling. We would like to identify the 
following two forms of causal dependencies as salient for 
hierarchical models:  

1. State dependence. This is when the state of one 
model influences the state of another. For example, a 
purchase interaction may need to be rolled back into 
a previous state, if haggling didn’t succeed. 

2. Model dependence. This is when the state of one 
model engages or disengages an entire other model. 
For example, starting an evaluation could enable a 
number of specialized behaviors, which get disabled 
once evaluation ends.  

We reduce these dependencies to coupling, as follows.  

State Dependence 
State dependence happens when state belief in one model 
influences state belief in another model. Consider two 
states, the controlling state sC ∈ SC, and the target state 
sT ∈ ST, such that the belief in the controlling state is 
intended to influence the belief in the target state.  

We eliminate this dependence via inspection. Set sT to 
inspect sC via some modification function f: define some 
unique action γC to correspond to the inspection, and 
define et (γC) = bt-1 ◦ f (sC), and g (γC, sT) = 1. The result is 
that the target’s belief value will be a function of the 
controller’s previous belief value. 

Model Dependence 
Model dependence happens when the state of one 
interaction can influence the engagement in an entire 
other interaction, as in push-down hierarchical models. 

We eliminate this dependence via inspection. Consider 
the target state space ST and some controlling state sC 
belonging to a different model. Allow ST to contain a 
unique disable state s0, with incoming links from all 
states, and an outgoing link to the initial state s1; belief 
distribution over s0 signifies confidence that the entire 
model is disengaged.  

Specify that s0 inspects sC in two ways: there exist two 
unique actions γE, γD that correspond to the engagement 
and disengagement of the submodel, mediated through 
some function f. Define et (γE) = bt-1 ◦ f  (sC), et (γD) = 1 – 
bt-1 ◦ f  (sC), and expectations g (γD, s0) = 1, and 
g (γE, s1) = 1. 

We then use these two dependency reductions of state 
and model dependence, to translate causally dependent 
models into independent, weakly coupled ones. 

Results 

The resulting approach implements a hierarchy of 
parallel, coupled HMMs, each of which is very cheap to 
track. 

Two systems use this approach to implement 
conversational interaction. The first, a conversational 
“sim” titled The Breakup Conversation, is a parody of the 
conversation at the end of a romantic relationship. The 
player starts out as someone involved in a failed 
relationship, who decides to end it via internet chat, and 
the role of the soon-to-be-ex is played by the computer. 
Figure 3 presents a fragment of the system’s model 
hierarchy. 
 

 
The second system is Xenos, an NPC for the fantasy 

game Neverwinter Nights, which acts as a shopkeeper: 
sells items, introduces quests, or offers some bar goods, 
via natural language conversation. Its utterances are 
contextually coherent, but stylistically rough, to convey the 
idea that it does not really understand the language. An 
example of an exchange with Xenos is presented in Figure 
4. 

 

 
 
Figure 3. Fragment of the weakly coupled hierarchy from 

The Breakup Conversation. 



 

Both systems contain redundant models of interaction, 
on different levels of generality—Table 1 presents an 
overview of the different HMMs from the two 
demonstration systems. All of these models are active at 
the same time, all the time, and monitor the ongoing 
interaction; if the player steps outside of some specific 
model’s area of competence, for example by using an 
unexpected speech act, the interaction will fall back onto 
more general components, which will deal with the 
situation. The result is an interaction system that exhibits 
the desirable hierarchical parallel property: the interaction 
retains hierarchical composition of sub-interactions that 
can affect over each other, but at the same time allows for 
parallel and independent engagement on different levels of 
generality. The redundant representation softens the 
performance drop-off at the edge of competence, and can 
be used to mimic some of the human ways of dealing with 
error. 

The systems are exceedingly efficient. A recent version 
of the Conversation is built on a set of 75 coupled HMMs 
and, as described in a forthcoming report (Zubek 2005), it 
takes less than 30ms on the average to process an 
utterance —including parsing, evidence estimation, belief 
computation, and output production. Indeed, most of the 

 

Xenos conversation fragment. 
Computer’s utterances and emotes in boldface: 

Player says: hi there 
Xenos says: welcome 
Player says: i need a new sword 
Xenos glances 
Xenos says: i have for you sword 
Player says: how is it 
Xenos says: are you looking for a job? 
Xenos says: it's a dwarven sword 
Player says: how much 
Xenos nods: hm 
Xenos says: i'll trade for a health potion 
Xenos glances 
Player says: i don't have one 
Xenos says: too bad 
Player says: about that job though 
Player says: what is it 
Xenos says: i need to get a letter from  
 the mayor 
Xenos says: could you go bring it from the 
  mayor of our town? 
 

Figure 4. Xenos conversation fragment, including quest 
and item threads. 

 
Shared Spaces 
 
Low level monitors: 
  Conversation timer 
  Silence monitor 
  Monologue monitor 
 
Ambient movement: 
  Fidget machine 
  Turn enforcement  
  Ambient emote 
  Stock response 
  Turn monitor  
  Topic monitor 
 
Insult management: 
  Direct insult 
  Indirect insult 
  Insult accumulation  
 
General routines: 
  Topic recognized but not the form 
  Question recognized but not topic 
  Question about object 
  Question about health 
  Request general 
  Request item 
  Disagreement 
  Player evaluation 
  Agent evaluation 
  Condemnation monitor 
 
Conversation structure: 
  Greeting 
  Intro conversation 
  Outro conversation 

 
Breakup-specific 
 
Breakup intro: 
  Allude to breakup 
  Giving in monitor 
  Guilting coordinator 
 
Guilting: Self-pity 
  Self-criticize 
  Reject compliment 
  “You must hate me” 
  “Why are you mean” 
  “Will you help me” 
 
Guilting: Indignation 
  “I thought you loved me” 
  “I thought you cared” 
  “I don’t deserve this” 
  “How can you do this”  
 
Guilting: Pleading 
  Beg for second chance 
  Promise change 
  “But I love you” 
 
Guilting: Reasoning 
  Guess at reason 
  Demand reason 
  Evaluate reason 
  Treat as excuse 
  Deny reason 
 
Panicking: 
  Silence 
  Impatience monitor 
  Resignation monitor 
  Rejection monitor 
  Start panic 

  
Xenos-specific 
 
Quests: 
  Quest monitor 
  Perform quest injection 
  Deal with agreement 
  Deal with rejection 
  Rush the player 
 
Special routines: 
  Job request 
  What question 
  Where question 
  Payment question 
  Evaluate object 
  Barter for object 
 
 
 
 
 
 
 
 

 
Table 1. Outline of the different spaces used in the two implementations. 



computation is spent running an off-the-shelf parser—
without parsing, the HMM computation takes less than 
0.5ms on the average. 

In our experience, the separation of interaction elements 
into distinct models simplifies authoring, and the weak 
coupling limits their possible interactions, simplifying 
debugging. Finally, good preprocessing and compile-time 
optimizations make the HMM calculations very cheap. 
Act estimation can be implemented using inexpensive 
pattern matching, belief distribution can be optimized as 
matrix multiplication, and action production can be done 
as cheap template filling.  

Related Work 
Finite-state techniques are popular in dialog and 
interaction modeling, and “[m]ost commercially available 
dialogue systems use some form of finite-state dialogue 
modeling” (McTear 1998). Cole et al. (1995) present a 
good overview of these approaches, in the Survey of the 
State of the Art in Human Language Technology, with 
more detailed background information is available in 
Grosz et al. (1986).  

Stochastic techniques have been popular in language 
modeling on the utterance level (Jelinek 1997, Roche and 
Schabes 1997), and have been recently extended to dialog 
modeling (Pineau, Roy and Thrun 2001, Young 1999, 
Levin and Pieraccini 1997). Hierarchical HMMs (Fine, 
Singer and Tishby 1998) and related approaches 
(Ghahramani and Jordan 1995, Saul and Jordan 1995) are 
currently being investigated for dialog engagement. 

Related work from entertainment includes 
developments on managing dialog as part of a larger 
action selection architecture (Loyall 1997, Mateas and 
Stern 2002). Also, entertainment products routinely 
employ pattern matching techniques such as those used in 
chatterbots (Mauldin 1994, Hutchens 1998).  
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